# Depth Analysis and Potentiality Exploitation on Energy-Saving and Consumption-Reduction of Aluminum Reduction Pot

Zhou Jianfei<sup>1</sup>, Marc Dupuis<sup>2</sup>, Yan Feiya<sup>1</sup>, Huang Jun<sup>1</sup>, Yi Xiaobing<sup>1</sup>









#### Dr. Marc Dupuis has been appointed Technical Consultant of GAMI







#### Dr. Marc Dupuis has been appointed Technical Consultant of GAMI







## **At the New Year Celebration in Guiyang**







# **Plan of the Presentation**

#### Introduction

- Analysis of mechanism and nature of pot work voltage reduction based on energy balance principle
- Heat dissipation at pot top
- Heat dissipation distribution calculation and actual measurement comparison between conventional lining and new thermal insulation lining in 350 kA pot
- Conclusions





# **Plan of the Presentation**

#### • Introduction

- Analysis of mechanism and nature of pot work voltage reduction based on energy balance principle
- Heat dissipation at pot top
- Heat dissipation at pot side and pot bottom
- Heat dissipation distribution calculation and actual measurement comparison between conventional lining and new thermal insulation lining in 350 kA pot
- Conclusions





# Introduction

The key technologies in aluminum reduction are studied and developed, which raises Chinese aluminum reduction technology to the world advanced level soon.

Moreover, the consumption of energy and raw material for aluminum reduction production is very high in recent years, especially power consumption. With the energy crisis, the aluminum reduction production costs must be reduced without delay.

For this, the most efficient method is to reduce the DC consumption by increasing current efficiency (CE) and reducing cell voltage.





## **Analysis of Mechanism and Nature of Pot Work Voltage Reduction based on Energy Balance Principle**

The pot energy balance was summarized by Warren Haupin in [1]. The heat input and output may be divided into the followings:

> Heat input 1. Current (variable) 2. Voltage 2.1 Anode (constant) 2.2 Cathode (constant) 2.3 ACD 2.3.1 Bubble voltage drop (variable) 2.3.2 Bath voltage drop—ACD, bath ratio (variable) 2.3.3 Back-EMF (constant)



## **Analysis of Mechanism and Nature of Pot Work Voltage Reduction based on Energy Balance Principle**

**Heat output** 

- 1. Heat dissipation at pot top (internal cause: Topr ) (External cause: material and thickness of anode covering materials, flue gas velocity and sealing degree of pot hood)
- 2. Heat dissipation at pot side (internal cause: Tsuper) (External cause: bath level, metal level, pot lining design)
- **3.** Heat dissipation at pot bottom (internal cause: Topr ) (External cause: material and thickness of cathode lining)

The object of voltage reduction is the voltage combination in the heat input, the majority of which is voltage drop of ACD (anode cathode distance).

Therefore, the energy balance of pot is maintained by reducing the heat dissipation in heat output combination as well as the voltage in heat input combination so as to reduce the voltage.





The material composition of the covering materials is relevant to the alumina content and the bath crushing size in the covering materials



Covering materials sample with above 93% Al2O3 left, covering materials sample with below 13% Al2O3 and 0.5-8mm bath crushing size right





| Area       | Heat dissipation area     |                         | Heat<br>dissipation<br>(KVV) | Heat<br>dissipation<br>(V) | %    |
|------------|---------------------------|-------------------------|------------------------------|----------------------------|------|
| Anode area | Pot hood                  | Pot side<br>cover plate | 112.8                        | 0.346                      | 18.4 |
|            |                           | Pot rim plate           | 15.5                         | 0.047                      | 2.5  |
|            |                           | Pot end cover<br>plate  | 15.0                         | 0.046                      | 2.4  |
|            |                           | Sub-total               | 143.2                        | 0.439                      | 23.4 |
|            | Pot<br>superstruct<br>ure | Pot top                 | 43.4                         | 0.133                      | 7.1  |
|            |                           | Anode guide<br>bar      | 7.4                          | 0.023                      | 1.2  |
|            |                           | Fume                    | 181.5                        | 0.557                      | 29.7 |
|            |                           | Sub-total               | 232.3                        | 0.713                      | 38.0 |
|            | Total                     |                         | 375.5                        | 1.152                      | 61.4 |

Heat dissipation distribution (anode area) for a Type A 320 kA pot





| Area          | Heat dissipation area     |                        | Heat<br>dissipation<br>(k\A/) | Heat<br>dissipation<br>(V) | %    |
|---------------|---------------------------|------------------------|-------------------------------|----------------------------|------|
| Anode<br>area | Pot hood<br>cover plate   |                        | 97.1                          | 0.298                      | 16.1 |
|               |                           | Pot rim plate          | 21.0                          | 0.064                      | 3.5  |
|               |                           | Pot end<br>cover plate | 16.3                          | 0.050                      | 2.7  |
|               |                           | Sub-total              | 134.4                         | 0.412                      | 22.2 |
|               | Pot<br>superstruct<br>ure | Pot top                | 67.1                          | 0.206                      | 11.1 |
|               |                           | Anode guide<br>bar     | 6.9                           | 0.021                      | 1.1  |
|               |                           | Fume                   | 111.5                         | 0.342                      | 18.5 |
|               |                           | Sub-total              | 185.5                         | 0.569                      | 30.7 |
|               | Total                     |                        | 319.8                         | 0.981                      | 52.9 |

Heat dissipation distribution (anode area) for a Type B 320 kA pot





The thickness of covering materials has a major impact on the heat dissipation at the top of the pot.



350 kA, covering materials with a thickness of 10 cm





The thickness of covering materials has a major impact on the heat dissipation at the top of the pot.



#### 350 kA, covering materials with a thickness of 18 cm





Covering materials with 10 cm thickness

|                                                  | kW/V             | *     |
|--------------------------------------------------|------------------|-------|
| Heat dissipation of aluminum guide bar :         | 20.480/0.059     | 2.75  |
| Heat dissipation of anode stub:                  | 150.976/0.431    | 20.31 |
| Heat dissipation of horizontal covering layer:   | 169.116/0.483    | 22.75 |
| Heat dissipation of slope covering layer:        | 23.869/0.068     | 3.21  |
| Heat dissipation of inner rim plate at pot side: | 0.492/0.001      | 0.07  |
| Heat dissipation of inner rim plate at pot end:  | 1.089/0.003      | 0.15  |
|                                                  |                  |       |
| Heat dissipation of anode area:                  | 366.022/1.046    | 49.23 |
|                                                  |                  |       |
|                                                  |                  |       |
| Covering materials with 18 cm thickness          |                  |       |
|                                                  | ~~ == ~ /~ ~ ~ ~ |       |
| Heat dissipation of aluminum guide bar:          | 22.759/0.065     | 3.31  |
| Heat dissipation of anode stub:                  | 136.407/0.390    | 19.87 |
| Heat dissipation of horizontal covering layer:   | 124.906/0.357    | 18.19 |
| Heat dissipation of slope covering layer:        | 23.505/0.067     | 3.42  |
| Heat dissipation of inner rim plate at pot side: | 0.492/0.001      | 0.07  |
| Heat dissipation of inner rim plate at pot end:  | 1.089/0.003      | 0.16  |
|                                                  |                  |       |
| Heat dissipation of anode area:                  | 309.158/0.883    | 45.03 |

Impact of different thickness covering materials on voltage reduction



. . . / . .

## Heat dissipation at pot side and pot bottom

|                 | Pot side ledge | Pot side bottom  | Pot end ledge  | Pot end bottom |  |
|-----------------|----------------|------------------|----------------|----------------|--|
|                 | thickness (cm) | ledge length(cm) | thickness (cm) | length(cm)     |  |
| Flat-bottom     | 015            | E 1 E            | 17 10          | 0 1 0          |  |
| cathode         | 0-10           | 0-10             | 12-10          | 0-10           |  |
| Irregular-botto | 10.10          | 20-25            | 10.00          | 10.00          |  |
| m cathode       | 10-18          | (inside groove)  | 13-20          | 10-20          |  |

**Relationship of optimal ledge thickness and bottom ledge length** 

| Pot voltage     | 3.7 to 3.9 V        | 3.9-4.1 V          | 4.1-4.2 ∨          |
|-----------------|---------------------|--------------------|--------------------|
| Superheat       | Below 7 °C          | 8-10 °C            | Above 10 °C        |
| Thermal         | Thermal insulation  | Thermal insulation | Thermal insulation |
| insulation area | of side, lower side | of side and bottom | of bottom          |
|                 | and bottom          |                    |                    |

**Relationship among voltage, superheat and lining thermal insulation** 





Conventional lining structure

| Current density:              | 350000 | (A)  |
|-------------------------------|--------|------|
| Metal level:                  | 22.0   | (cm) |
| Bath level:                   | 18.0   | (cm) |
| ACD (anode cathode distance): | 5.4    | (cm) |
| Covering material thickness:  | 18     | (cm) |
| A1203:                        | 2.5    | (%)  |
| Alf3:                         | 10     | (%)  |
| LiF:                          | 1      | (%)  |
| MgF2:                         | 0.4    | (%)  |
| CaF2:                         | 5.6    | (%)  |
| Liquidus temperature:         | 945.32 | (°C) |
| Superheat:                    | 8.0    | (°C) |

**Process control parameters** 







**Conventional lining structure, pot side temperature** 





**Conventional lining structure, pot end temperature** 





**Conventional lining structure, profile of pot side ledge** 

GENISIM

Conventional lining structure

| Anode voltage drop:                 | 346  | (mv) |
|-------------------------------------|------|------|
| Clamp voltage drop:                 | 15   | (mv) |
| Guide rod voltage drop:             | 26   | (mv) |
| Explosive welding voltage drop:     | 8    | (mv) |
| Anode stub voltage drop:            | 42   | (mv) |
| Voltage drop of iron/carbon joint:  | 105  | (mv) |
| Carbon block voltage drop:          | 150  | (mv) |
| Bath layer voltage drop:            | 1502 | (mv) |
| Bubble layer voltage drop:          | 170  | (mv) |
| Cathode voltage drop:               | 284  | (mv) |
| Cathode steel bar voltage drop:     | 109  | (mv) |
| Cathode joint voltage drop:         | 106  | (mv) |
| Cathode carbon block voltage drop:  | 69   | (mv) |
| Counteraction electric potential:   | 1672 | (mv) |
| Voltage drop for busbar around pot: | 200  | (mv) |
|                                     |      |      |

Pot working voltage:

4.174 (V)

Voltage break down





| New thermal insulation lining | structure   |
|-------------------------------|-------------|
| Current density:              | 350000 (A)  |
| Metal level:                  | 12.0 (cm)   |
| Bath level:                   | 18.0 (cm)   |
| ACD (anode cathode distance): | 4.5 (cm)    |
| Covering material thickness:  | 18 (cm)     |
| A1203:                        | 2.5 (%)     |
| Alf3:                         | 10 (%)      |
| LiF:                          | 1 (%)       |
| MgF2:                         | 0.4 (%)     |
| CaF2:                         | 5.6 (%)     |
| Liquidus temperature:         | 945.32 (°C) |
| Superheat:                    | (7.0)(°C)   |

**Process control parameters** 





New thermal insulation lining structure, pot side temperature





New thermal insulation lining structure, pot end temperature





New thermal insulation lining structure, profile of pot side ledge

GENISI

New thermal insulation lining structure

| Anode voltage drop:                 | 347  | (mv) |
|-------------------------------------|------|------|
| Clamp voltage drop:                 | 15   | (mv) |
| Guide rod voltage drop:             | 26   | (mv) |
| Explosive welding voltage drop:     | 8    | (mv) |
| Anode stub voltage drop:            | 42   | (mv) |
| Voltage drop of iron/carbon joint:  | 104  | (mv) |
| Carbon block voltage drop:          | 151  | (mv) |
| Bath layer voltage drop:            | 1228 | (mv) |
| Bubble layer voltage drop:          | 170  | (mv) |
| Cathode voltage drop:               | 229  | (mv) |
| Cathode steel bar voltage drop:     | 106  | (mv) |
| Cathode joint voltage drop:         | 64   | (mv) |
| Cathode carbon block voltage drop:  | 59   | (mv) |
| Counteraction electric potential:   | 1672 | (mv) |
| Voltage drop for busbar around pot: | 200  | (mv) |
|                                     |      |      |

Pot working voltage:

3.846 (V)

#### Voltage break down





Conventional lining structure

Current efficiency: 94 % Daily aluminum production: 2650 kg Direct current consumption: 13231 kWh/T

New thermal insulation lining structure

Current efficiency: 93 % Daily aluminum production: 2622 kg Direct current consumption: 12323 kWh/T

**Comparison of economic benefit** 





# Conclusions

Throught industrialized experiments, testing at the site, computer simulation and comparisons, the ways and the methods to decrease energy consumption through pot voltage reduction with respect to heat dissipation are as follows:

- material and thickness of anode covering material
- new-type thermal insulating lining material
- new-type thermal insulating lining and cathode design

Comparing with the conventional pot, the reduced cell voltage is around 200-450 mV. The reduced energy consumption per ton aluminum is around 640-1440 kWh/T based on the calculation of 93% current efficiency.

The annual reduced energy consumption of the pot line is around 32\*107-72\*107 kWh per year based on the calculation of an annual capacity of 500 thousand tons.

The operation cost savings are in the range of 160 to 360 million Yuan per year as per 0.5 Yuan per kWh conversion for the power price.



